2024 Sandia Additive Manufacturing

Sandia National Laboratories announces the 2024 Sandia Additive Manufacturing Challenge with the Society of Manufacturing Engineers at UC Davis. The goal of this challenge is to encourage students to think about how they can overcome current manufacturing limitations by taking advantage of 3D printing technologies. This competition is open to any UC Davis students (graduate and undergraduate) interested in additive manufacturing (AM) who are registered SME members at UC Davis. To be a registered SME member students must join the email list and register on Aggie Life. Teams must have 3-5 members and will receive mentoring from Sandians with expertise in additive manufacturing.

Join email list: <u>https://lists.ucdavis.edu/sympa/subscribe/sme-members</u> Register on Aggie Life: <u>https://aggielife.ucdavis.edu/feeds?type=club&type_id=39538&tab=home</u>

Prompt

Create a "flat pack" snap-out (similar to those that come in model kits) design that can be manufactured in a vertical orientation to allow for multiple flat packs to be 3D printed at once. The piece parts of a single snap pack will be used to assemble a toy car with wheels that can spin freely.

2D visualization of removing a piece part from a flat pack snap-out

Stretch Goal

Analyze how thermal stresses during the manufacturing process may deform the part to be out of geometrical tolerance.

Note: Projects for this competition will not be eligible for the Sandia Engineering Design Award

<u>Relevance</u>

One key advantage to AM is the ability to fabricate geometries that are otherwise impossible using conventional tools. However, one limitation of AM is the throughput and relative cost per part. Being able to intelligently design parts to a larger assembly that can also maximize the productivity of a printer's build volume helps reduce cost and improve manufacturing productivity. A "flat pack" snap-out design is easier when built atop a single build plate, but more challenging when produced in a vertical and nested configuration to fill a printer's entire build volume. This is more relevant in powder-based technologies than Filament Deposition Method (FDM), but the concepts remain the same.

	1	2	3	Total
Demonstrate flat	Flat pack cannot be		Flat pack can be	
pack can be printed	printed vertically	N/A	printed vertically	
vertically				
Amount of post- processing required	Requires a large	Requires a	Minimal to no post-	
	amount of post-	moderate amount	processing required	
	processing	of post-processing		
Fit & finish of pieces	Pieces do not fit	Pieces fit poorly into	Pieces fit well into	
into final assembly	into final assembly	final assembly	final assembly	
Creativity	Design is	Design is acceptable	Design is innovative	
	unexceptional	with some	and thoughtful	
		innovations		
Presentation	Presentation lacks	Presentation is	Presentation is well	
	focus	relevant to prompt	articulated, focused,	
			and relevant	

<u>Rubric</u>

Stretch goal: up to 5 extra points: _____

Total Score: _____

Contact Information

Society of Manufacturing Engineers at UC Davis: <u>smeatucdavis@gmail.com</u> Sandia National Laboratories: <u>designaward@sandia.gov</u>

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2024-00428M

O ENERGY NISA