EME 50 Final Review

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review Questions Without Answers</td>
<td>2</td>
</tr>
<tr>
<td>Module 4 (Primary Shaping) (starting from slide 36)</td>
<td>2</td>
</tr>
<tr>
<td>Module 5 (Metal Forming)</td>
<td>2</td>
</tr>
<tr>
<td>Module 6 (Polymer Manufacturing, Additive Manufacturing)</td>
<td>3</td>
</tr>
<tr>
<td>Module 7 (Assembly and Joining)</td>
<td>3</td>
</tr>
<tr>
<td>Module 8 (Advanced Machining and Process Chains)</td>
<td>3</td>
</tr>
<tr>
<td>Module 9</td>
<td>4</td>
</tr>
</tbody>
</table>

Review Questions With Answers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 4 (Primary Shaping) (starting from slide 36)</td>
<td>4</td>
</tr>
<tr>
<td>Module 5 (Metal Forming)</td>
<td>5</td>
</tr>
<tr>
<td>Module 6 (Polymer Manufacturing, Additive Manufacturing)</td>
<td>5</td>
</tr>
<tr>
<td>Module 7 (Assembly and Joining)</td>
<td>6</td>
</tr>
<tr>
<td>Module 8 (Advanced Machining and Process Chains)</td>
<td>7</td>
</tr>
<tr>
<td>Module 9</td>
<td>8</td>
</tr>
</tbody>
</table>

Interim Review Notes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 4 (Primary Shaping) (starting from slide 36)</td>
<td>8</td>
</tr>
<tr>
<td>Module 5 (Metal Forming)</td>
<td>8</td>
</tr>
<tr>
<td>Module 6 (Polymer Manufacturing, Additive Manufacturing)</td>
<td>9</td>
</tr>
<tr>
<td>Module 7 (Assembly and Joining)</td>
<td>9</td>
</tr>
<tr>
<td>Module 8 (Advanced Machining and Process Chains)</td>
<td>9</td>
</tr>
<tr>
<td>Module 9</td>
<td>10</td>
</tr>
</tbody>
</table>

Detailed Notes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 4 (Primary Shaping) (starting from slide 36)</td>
<td>10</td>
</tr>
<tr>
<td>Module 5 (Metal Forming)</td>
<td>11</td>
</tr>
<tr>
<td>Module 6 (Polymer Manufacturing, Additive Manufacturing)</td>
<td>16</td>
</tr>
<tr>
<td>Module 7 (Assembly and Joining)</td>
<td>19</td>
</tr>
<tr>
<td>Module 8 (Advanced Machining and Process Chains)</td>
<td>21</td>
</tr>
<tr>
<td>Module 9</td>
<td>27</td>
</tr>
</tbody>
</table>
Module 4 (Primary Shaping)(starting from slide 36)

- Can centrifugal casting be used for motor engines? Why or why not?
- Name and explain the causes of 3 casting defects.
- What is the function of the core in casting?
- Which casting process would you use for a large machine bed? Which for a mass production of Zinc zipper teeth?
- Name a casting process with expendable mold and one with disposable mold each.
- Explain the difference between the 2 most common primary shaping processes for metal, casting and sintering.
- What are the steps of powder metallurgy?

Module 5 (Metal Forming)

- Distinguish the material structure
 - a) after forging form
 - b) after milling an extruded billet
 - c) after casting
- What is strain hardening?
- What are the advantages and disadvantages of hot forming compared to cold forming?
- Name 3 bulk forming procedures.
- Name 3 manufacturing processes used for sheet metal processing.
- Why is the anisotropy in the rolled sheet metals important for sheet metal forming?
- How is shearing in sheet metal processing different from cutting or grinding?
- What is the difference between martensite from quenching and tempered martensite?
- Name reasons for annealing.
- When can heat treatment take place in the manufacturing chain of a part?

Module 6 (Polymer Manufacturing, Additive Manufacturing)

- What are the 3 main types of polymers?
- Are interlinked polymers thermosetting or thermoplastic?
- Name 3 manufacturing processes to shape polymers.
- What is the purpose of the rotating screw in the equipment for extrusion and injection molding?
- What functions do matrix and reinforcing agents in composites have?
- What implications come from the fact that additive manufacturing produces parts in layers?
- What is a support structure?
- What material is used in stereolithography and why?
• What additive manufacturing methods allow to produce metallic parts?

Module 7 (Assembly and Joining)
• What are ways of heat generation in fusion welding?
• Explain how arc welding works.
• What is the difference between fusion welding and solid-state welding?
• Explain how spot welding works.
• Name 5 joining methods. What are their physical principles?
• Which mechanical fasteners establish a non-permanent joint?
• Name 3 guidelines for design for assembly.
• What are factors for choosing a certain joining method for part assembly?
• What joining methods can be used for dissimilar materials?

Module 8 (Advanced Machining and Process Chains)
• Name 4 advanced machining processes.
• Explain the terms EDM and ECM.
• What are the removal mechanisms in ECM and EDM?
• What are the advantages of the chemical and electrochemical processes compared to EDM?
• What fundamental law defines the material removal rate of ECM?
• What do you have to consider in process planning?
• Compare soft and hard machining.
• Discuss different methods to produce dies made of high-alloy steels.
• Differentiate between process planning, production planning, and facility planning.

Module 9
Don’t worry about this :)

Review Questions With Answers

Module 4 (Primary Shaping) (starting from slide 36)
• Can centrifugal casting be used for motor engines? Why or why not?
 ○ No, centrifugal casting can only produce radially symmetrical parts.
• Name and explain the causes of 3 casting defects.
 ○ Misrun: material doesn’t run all the way into the mold because it solidified too early
 ○ Cold shut: The part is formed incorrectly due to a lack of fusion between some parts of the molten metal
- Cold shots: splattered metal globules
- Shrinkage cavity: unintentional cavity in part due to not having enough material
- Microporosity: part has lots of small pores/holes due to bad cooling process
- Hot cracks: cracks in part because mold prohibits shrinkage

- What is the function of the core in casting?
 - The function of the core is to define the internal holes/features of the cast part

- Which casting process would you use for a large machine bed? Which for a mass production of Zinc zipper teeth?
 - Machine bed: Sand Casting
 - Zinc Zipper teeth: Die casting

- Name a casting process with expendable mold and one with disposable mold each.
 - Expendable: lost wax, sand casting, investment casting
 - Permanent: centrifugal, die, continuous casting

- Explain the difference between the 2 most common primary shaping processes for metal, casting and sintering.
 - Casting involves melting the metal pieces, whereas sintering does not actually melt the metal.

- What are the steps of powder metallurgy?
 - Powder
 - Mixing
 - Pressing
 - Sintering
 - Sizing

Module 5 (Metal Forming)

- Distinguish the material structure
 - a) after forging form
 - b) after milling an extruded billet
 - c) after casting

- What is strain hardening?
 - Strengthening of a material by plastic deformation

- What are the advantages and disadvantages of hot forming compared to cold forming?
 - Advantages: lower forces, more deformation, isotropic properties
 - Disadvantages: lower accuracy and surface finish

- Name 3 bulk forming procedures.
 - Cold, warm, and hot forming

- Name 3 manufacturing processes used for sheet metal processing.
 - Rolling, shearing, and bending

- Why is the anisotropy in the rolled sheet metals important for sheet metal forming?
 - You need to bend parallel to the rolling direction to avoid seeing grain boundaries
● How is shearing in sheet metal processing different from cutting or grinding?
 ○ Shearing uses 1 pressing motion
● What is the difference between martensite from quenching and tempered martensite?
 ○ Untempered martensite is strong, hard, and brittle. Tempered martensite is more tough, but less strong.
● Name reasons for annealing.
 ○ More ductility, better machinability, less residual stresses
● When can heat treatment take place in the manufacturing chain of a part?
 ○ After all soft machining processes have been completed and the part is close to its final shape

Module 6 (Polymer Manufacturing, Additive Manufacturing)

● What are the 3 main types of polymers?
 ○ Thermoplastics
 ○ Thermosets
 ○ Elastomers
● Are interlinked polymers thermosetting or thermoplastic?
 ○ Thermosets
● Name 3 manufacturing processes to shape polymers.
 ○ Extrusion
 ○ Blow molding
 ○ Compression molding
 ○ Injection molding
 ○ Casting
● What is the purpose of the rotating screw in the equipment for extrusion and injection molding?
 ○ To feed the plastic at a uniform rate and move it through the heating tube very uniformly.
● What functions do matrix and reinforcing agents in composites have?
 ○ Matrix: hold everything in place
 ○ Reinforcing agent: provide structural rigidity and strength
● What implications come from the fact that additive manufacturing produces parts in layers?
 ○ The parts are always anisotropic
● What is a support structure?
 ○ A temporary structure that is produced to hold up the final part but should be removed after the manufacturing is done.
● What material is used in stereolithography and why?
 ○ Liquid photopolymer because it cures when UV light is shined on it.
● What additive manufacturing methods allow to produce metallic parts?
 ○ 3DP, Selective Laser Sintering, Electron-beam Melting
Module 7 (Assembly and Joining)

- What are ways of heat generation in fusion welding?
 - Arc, Oxyfuel, Beam
- Explain how arc welding works.
- What is the difference between fusion welding and solid-state welding?
- Explain how spot welding works.
 - 2 electrodes are brought together from different sides of the metal pieces. The electrical resistance causes heat that melts the metal.
- Name 5 joining methods. What are their physical principles?
 - Arc Welding
 - Resistance Welding
 - Electrical resistance
 - Brazing, Soldering
 - Capillary action
 - Adhesive Bonding
 - Bolts + Nuts
 - friction
 - Riveting
 - Seaming and Crimping
 - friction
- Which mechanical fasteners establish a non-permanent joint?
 - screws/bolts + nuts
- Name 3 guidelines for design for assembly.
 - Use fewest number of parts possible
 - Reduce number of threaded fasteners
 - Standardize fasteners
 - Avoid parts that tangle
- What are factors for choosing a certain joining method for part assembly?
 - Needed joint strength, money, part materials, disassembly
- What joining methods can be used for dissimilar materials?
 - Seaming, crimping, interference fit, adhesive bonding

Module 8 (Advanced Machining and Process Chains)

- Name 4 advanced machining processes.
- Explain the terms EDM and ECM.
 - ECM (Electrochemical machining)
 - The metal is eroded through electricity transfer. The metal is the anode and the tool is the cathode
 - EDM (Electro Discharge machining)
 - High amounts of electricity are fed through a tiny wire. A spark causes the metal to dissolve instantly.
• What are the removal mechanisms in ECM and EDM?
 ○ ECM: anodic metal dissolution
 ○ EDM: thermal evaporation
• What are the advantages of the chemical and electrochemical processes compared to EDM?
 ○ No tool wear
 ○ No thermal damage on part surface
• What fundamental law defines the material removal rate of ECM?
 ○ Faraday’s law
• What do you have to consider in process planning?
 ○ How many products?
 ○ Which processes?
 ○ What are parameters, tools, machines for each process?
• Compare soft and hard machining.
 ○ Soft machining
 ■ Lower forces on part and tool
 ■ Less tool wear
 ○ Hard machining
 ■ Higher forces on tool+ part
 ■ Better part accuracy
• Discuss different methods to produce dies made of high-alloy steels.
• Differentiate between process planning, production planning, and facility planning.
 ○ Process planning: decide manufacturing procedures, including batch size, machines, tools, and parameters
 ○ Production planning: decide exactly which product you want to manufacture
 ○ Facility planning: workstation design, number of stations, employees per station, product flow through factory.

Module 9
Don’t worry about this :)
• The powder particle size and shape define the final product’s structure and porosity.

Module 5 (Metal Forming)
• Dislocations explain plastic deformation (pure sliding would need much higher forces than experienced in practice).
• Lattice defects form dislocations, but lattice defects and grain boundaries also hinder the movement of dislocations.
• Strain hardening is a physical mechanism in the metal, where dislocations add up and strengthen the material. Without being relieved, dislocations ultimately lead to breakage under further load.
• Forging can improve the material flow compared to a cast or extruded product.
• Shearing is an important, chip-free cutting process for sheet metals. In the variant blanking the inner part is used, in punching the outer part.
• Sheet metal forming processes include bending, deep drawing, and incremental forming amongst others.
• In forming, it is important to understand tribology (friction, lubrication, and wear)
• The most important heat treatment operations for steels include annealing, martensitic hardening, and tempering.
• The design of the time-temperature curve (including potentially multiple heating and cooling cycles) allows for adjusted microstructures.
• In contrast to through hardening, surface hardening affects the rim zone of the part. Surface hardening is a heat treatment process with or without adding carbon, nitrogen, or other alloying elements to the part.
• Heat treatments lead to part deformations, which might need to be removed (hard machining).

Module 6 (Polymer Manufacturing, Additive Manufacturing)
• The interim review for the first part of module 6 is missing from the slide deck :(
• Additive manufacturing principles build parts in layers. They enable rapid prototyping, rapid tooling, and rapid manufacturing
 ○ In stereolithography, liquid polymer is cured through UV light
 ○ In fused-deposition modeling, heated polymer wires cool at air
 ○ In powder bed and inkjet head 3d printing, a binder consolidates powder material
 ○ Selective laser sintering and electron-beam melting are additive manufacturing variants, in which powder metal is molten or sintered
 ○ In laminated object modeling, layers of paper, polymer, or metal are glued together
Module 7 (Assembly and Joining)

- Assembly means joining parts together. The joining technique depends on the tolerances, the price and on the duration of the joint (permanent or disassembly possible) amongst others.
- In welding, material coalesces together either by fusion (through heat from arc, oxyfuel, or beam) or in a solid state (through softening and merging).
- In fusion welding, part distortion from heat needs to be considered.
- In brazing and soldering, a filler is introduced to the joint and holds the parts together.
- Soldering works at lower temperatures than brazing.
- Joints by adhesive bonding have a broad application range, but can only take limited load.
- Mechanical fastening includes the use of fasteners, seaming, crimping, and interference fits.
- Only threaded fasteners enable disassembly.
- Product designers and manufacturing engineers need to consider assembly in terms of design for assembly, design for disassembly, assembly sequence, and available assembly systems.

Module 8 (Advanced Machining and Process Chains)

- Missing for part 1 :(
- Product design determines the product development and manufacturing costs significantly. Concurrent design (interaction between design and manufacturing) helps to improve cost efficiency and reduce time to market.
- Manufacturing costs consist of a constant portion (material, tool,...) and a time-dependent portion (labor, machine, energy costs,...)
- Manufactured parts have a history of manufacturing processes, which defines shape, tolerances, properties, surface integrity,...
- In process planning, the manufacturing procedures are chosen including batch size, machine tools, tooling, and parameters.

Module 9

- Not on test :)

Detailed Notes

Module 4 (Primary Shaping) (starting from slide 36)

- Powder metallurgy steps
 - Powder
- Mixing
- Pressing
- Sintering
- Sizing

- Powder metallurgy characteristics
 - High speed steels
 - Near net shape parts
 - High material utilization + efficiency
 - Specific porosity

- Powder metallurgy cons
 - Expensive equipment
 - Powder handling is dangerous
 - Expensive powder

- Sintering mechanisms
 - Particle bonding starts at contact points
 - Contact points grow into necks
 - Pores shrink
 - Grain boundaries replace necked regions

- Design for powder metallurgy
 - Avoid sharp corners and radii
 - Be aware of threads and transverse holes need to be machined afterwards

Module 5 (Metal Forming)

- Metal forming = producing finished product from semi-finished product through plastic deformation
- Uses compressive forces + plastic deformation
- More sliding systems => more formability
 - Formability = ability to undergo plastic deformation without being damaged
- Crystal defects
Defects in the crystallographic texture of metals

- Stress strain curve (must be able to reproduce this)

- The foreign atoms induce stress to the crystal lattice. This stress effects crystal strengthening of the material.
- Best formability present in pure metals
- Strain hardening = strengthening of material due to movement of existing dislocations and generation of new dislocations
- Forging can enhance material structure by aligning grain boundaries
- Forgeability = ability of a material to undergo deformation without cracking
- Factors of forgeability
 - Ductility, metal strength
 - Forging temp
 - Frictional behavior
 - Forging quality
- **Rolling**
 - Accounts for 90% of all metals produced
 - Plates >6 mm, sheets <6 mm
 - Works on
 - Metals
 - Polymers
 - Powder metals
 - Hot glass
 - Ceramic slurry
 - Hot rolling reduces grain size
 - Cold rolling is at room temp and leads to strain hardening
- **Extrusion**
 - Hot extrusion allows higher strains than cold
 - More expensive due to heat
 - Cold extrusion leads to work hardening
- **Bulk forming summary**
Efficiency of bulk forming operations

<table>
<thead>
<tr>
<th>Cold forming</th>
<th>Warm forming</th>
<th>Hot forming</th>
</tr>
</thead>
<tbody>
<tr>
<td>At room temperature</td>
<td>Temperatures between room and recrystallization temp.</td>
<td>Temperatures higher than recrystallization temp.</td>
</tr>
<tr>
<td>+ Good accuracy and surface finish</td>
<td>+ Lower forces, higher possible deformations</td>
<td>+ Lower forces, higher possible deformations</td>
</tr>
<tr>
<td>+ Strain hardening increases part strength</td>
<td>+ Isotropic properties</td>
<td>- Lower accuracy and surface finish</td>
</tr>
<tr>
<td>- High forces</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing the efficiency of bulk forming operations]

- **Sheet metal processing**
 - Rolling leads to sheets
 - Sheets can be sheared, bent, spun, or ironed
- **Shearing**
 - Before other forming operations
 - High output
 - Simple + cheap
 - Applications: automotive, med tech, household equipment
 - Punching
 - Included nibbling + blanking
- **Sheet metal processes list**
 - Shearing
 - Punching
 - Blanking
 - Deep drawing
 - Incremental forming
- **Heat treatment**
 - Heating + cooling processes to change material structure + properties
 - Includes

Source: F. Klocke, WZL, RWTH Aachen University
- Softening before forming
- During forming to relieve stress
- At end for case hardening

- **Annealing**
 - Forms different microstructures with different properties

- **Hardening**
 - Based on forming martensitic steel
 - Carbon is frozen in austenitic lattice structure

- **Tempering** removes stresses

- **Surface hardening**
 - Can be done by flame or induction
 - Thermochemical methods
 - Carburizing
 - Nitriding
 - Carbonitriding
 - Chromizing
 - Boronizing

Thermochemical hardening principles

<table>
<thead>
<tr>
<th>Method</th>
<th>Steel</th>
<th>Principle</th>
<th>Av. layer depth[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carburizing</td>
<td>Low-carbon steel (0.2% C)</td>
<td>Heating steel in C-rich environment, C diffuses into surface and generates a high-carbon steel (875 – 925°C)</td>
<td>(55 - 65HRC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pack carburizing</td>
<td>0.6 – 3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gas carburizing</td>
<td>0.13 – 0.75</td>
</tr>
<tr>
<td>Nitriding</td>
<td>Alloy steels with Al or Cr</td>
<td>Heating in gaseous or liquid N-rich environment, N diffuses into surface and forms nitrides (around 510 °C)</td>
<td>0.025 – 0.5 (>HRC 70)</td>
</tr>
<tr>
<td>Carbo-nitriding</td>
<td></td>
<td>Combination of carburizing and nitriding</td>
<td>0.07 – 0.5</td>
</tr>
<tr>
<td>Chromizing</td>
<td>Low-carbon steels</td>
<td>Heating in Cr-rich environment, Cr diffuses into surface</td>
<td>0.025 – 0.05</td>
</tr>
<tr>
<td>Boronizing</td>
<td>Tool steels, Ni- and Co-based alloys, cast iron, carbon steels</td>
<td>Heating in B-rich environment, Cr diffuses into surface</td>
<td>0.025 – 0.05 (>HRC 70)</td>
</tr>
</tbody>
</table>

Source: M. Groover, Fundamentals of modern manufacturing, 1996
- Process order
 - Soft state material removal (do as much as possible here)
 - Heat treatment
 - Hard state material removal

Module 6 (Polymer Manufacturing, Additive Manufacturing)

- Polymer = material made of long molecules with repeating units, often carbon-based, also called plastics
 - Primary bonds: covalent
 - Secondary bonds: van der waals, hydrogen, and ionic
- Types:
 - Thermoplastics
 - Soft when heated
 - Thermosets
 - Hard when heated
 - Elastomers
 - Viscous and elastic. Think of rubber
- Pros
 - Cheap
 - Easy to form into complex shapes
 - Light weight
 - Electrical + thermal insulators
- Cons
 - Low strength/ toughness/ melting point
 - May degrade easily
 - May creep
- Plastic processing processes
 - Extrusion
 - Material is forced to flow through a small opening
 - Most common
 - Blow molding
 - Compression molding
 - Injection molding
 - Close mold
 - Inject melt into cavity
 - Retract screw
 - Open mold + eject part
 - Casting
Molding techniques for plastics overview

<table>
<thead>
<tr>
<th></th>
<th>Equipment and tooling costs</th>
<th>Production rate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrusion</td>
<td>Medium – low</td>
<td>Very high – high</td>
<td>One profile along the length, continuous process</td>
</tr>
<tr>
<td>Injection molding</td>
<td>Very high</td>
<td>Very high</td>
<td>Versatile</td>
</tr>
<tr>
<td>Blow molding</td>
<td>Medium</td>
<td>high – medium</td>
<td>Hollow parts</td>
</tr>
<tr>
<td>Compression molding</td>
<td>High – medium</td>
<td>Medium</td>
<td>widely used for thermosetting plastics</td>
</tr>
<tr>
<td>Casting</td>
<td>Medium – low</td>
<td>Medium – low</td>
<td>Low viscosity material</td>
</tr>
</tbody>
</table>

Many more processes: Foam molding, transfer molding, rotational molding, thermoforming, calendering, etc.

- Composites
 - Made up of primary matrix phase and secondary reinforcing phase
 - Can involve plastics, metals, or ceramics
- Curing
 - Can be room temp or heated
 - Usually pressurized
- Cutting composites
 - Hard to do once machined because different material properties and fibers are abrasive
 - Defects
 - Fiber pulling and tearing
 - Edge delamination
 - Waterlogging
- Additive manufacturing
 - Build up a part in layers
 - Layer thickness defines accuracy
 - Orientation matters
 - Finishing operations might be needed
 - Overhanging parts need supports
- Types of AM
- **Stereolithography**
 - Curing a liquid polymer
 - Vat is filled with liquid polymer, UV light source hardens top layer of liquid, platform is lowered in steps
- **Fused deposition modeling**
 - Melted polymer wire is extruded and deposited
 - Solidifies by cooling
- **Inkjet head 3d printing**
 - Printing a binder with an inkjet head onto powder
 - Powder materials can be sand, fibers, metals, or polymers
 - Binder can be polymers and starch
- **Selective Laser Sintering**
 - Sintering powders with a laser
- **Electron beam melting**
 - Melt/sinter powders with a beam of electrons
 - Need vacuum

Additive Manufacturing

<table>
<thead>
<tr>
<th>Process</th>
<th>Principle</th>
<th>Materials</th>
<th>Estimated equipment costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fused-deposition modeling (FDM)</td>
<td>Melted polymer is extruded, solidifies by cooling</td>
<td>Polymers</td>
<td>$200 – 300k Home printers down to $1k</td>
</tr>
<tr>
<td>Stereolithography (SLA)</td>
<td>Liquid layers are cured through photopolymerization</td>
<td>Photopolymers</td>
<td>$100k - $400k</td>
</tr>
<tr>
<td>3D printing (3DP)</td>
<td>Powder material and binder are deposited, binder cures</td>
<td>Ceramic, polymer, metal powder, sand</td>
<td>$20k - $70k Polyjet up to $1Mio</td>
</tr>
<tr>
<td>Laminated Object Manufacturing (LOM)</td>
<td>Coated sheet material is cut by laser into layers, layers are bonded by heated roller</td>
<td>Paper</td>
<td>low</td>
</tr>
<tr>
<td>Selective laser sintering</td>
<td>Layers of powders are sintered or molten by laser</td>
<td>Polymers, metals with binder, metals, ceramics, sand with binder</td>
<td>$500k</td>
</tr>
<tr>
<td>Electron-beam melting</td>
<td>Layers of powder are molten by electron beam</td>
<td>Titanium and its alloys, cobalt chrome</td>
<td>[$>1Mio]</td>
</tr>
</tbody>
</table>

Source: S. Kajaljeevan, S. Schmid, Manufacturing Engineering and Technology, 2018
Module 7 (Assembly and Joining)

- Joint examples

Example joints:

- Butt joint
- Lap joint
- Tee joint
- Corner joint
- Edge joint

Welding

- **Types**
 - **Fusion welding** - molten material
 - **Arc**
 - Needs shielding environment + filler
 - **Oxyfuel**
 - Fuel gas + oxygen \Rightarrow flame
 - Need torch + separate filler rod
 - **Beam**

Source: M. Groover, Fundamentals of modern manufacturing, 1996
Solid state welding - soften and merged material
- Electrical
- Chemical
- Mechanical

Weldability
- Process factors
 - Shielding gases
 - Fluxes
 - Moisture in electrode
 - Welding speed
 - Cooling rate
 - Preheating level
- Part design
- Material properties
 - Hot crack susceptibility
 - Stresses, heat treatment

Friction stir welding
- Material coalescing, heat due to friction
- Material softens below melting point
- Works for light metals

Brazing + soldering
- Filler is melted and distributed by capillary forces between joined parts
- Soldering uses lower temps than brazing and is weaker
● Adhesive bonding
 ○ Types of adhesives
 ■ natural(starch, animal glues, ...)
 ■ Inorganic
 ■ Synthetic organic/polymer
 ○ Works between dissimilar metals or for plastics
 ○ Needs large contact areas
● Mechanical fastening with threaded fasteners
 ○ Allows for disassembly
● Rivets
 ○ unthreaded, headed pin
 ○ Used in structural + aerospace applications
 ○ Permanent
● Seaming + Crimping
 ○ Seaming = joining by folding thin pieces of material
 ○ Crimping = joining by beads or dimples
● Design for Assembly (DFA)
 ○ Use fewest number of parts possible to reduce amount of assembly needed
 ○ Reduce # of fasteners (only for assembly + disassembly)
 ○ Standardize fasteners
 ○ Avoid parts that tangle
 ○ Reduce part orientation difficulties

Module 8 (Advanced Machining and Process Chains)

● Characteristics of advanced machining processes
 ○ Used when traditional processes might not be economical
 ○ Used for high strength/hardness materials
 ○ Used with brittle materials
 ○ Good for flexible, slender parts
 ○ Generate complex shapes
 ○ High surface + dimensional quality
 ○ Chemical processes are used when low thermal stress is needed
● Chemical machining
 ○ Controlled chemical dissolution or chemical reaction of the workpiece material with an active fluid medium(strongly acidic or basic)
 ○ Steps
 ■ Workpiece cleaning
 ■ Coating with masking material
 ■ Scribing mask
 ■ Etching
 ■ Cleaning
● Electrochemical Machining (ECM)
Anodic metal dissolution
- Workpiece is the anode and must be metal
- The tool is the cathode (brass, copper, bronze, stainless steel)
- Electrolytic medium

• **Electro Discharge Machining (EDM)**
 - Physical principle is evaporation by thermal energy
 - Workpiece is usually a cathode and electrically conductive
 - Tool is usually an anode (graphite, copper, brass)
 - Dielectric medium

• **Wire EDM**
 - Uses a metal wire to cut the workpiece

• **ECM vs EDM**

Comparison of ECM and EDM

<table>
<thead>
<tr>
<th></th>
<th>Electrochemical machining (ECM)</th>
<th>Electro-discharge machining (EDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece and tool</td>
<td>Workpiece is the anode, tool is cathode</td>
<td>Workpiece is commonly the cathode, tool is anode</td>
</tr>
<tr>
<td></td>
<td>Tool does not wear</td>
<td>Tool wears</td>
</tr>
<tr>
<td>Medium</td>
<td>Electrolyte (carries electrons)</td>
<td>Dielectric (isolates)</td>
</tr>
<tr>
<td>Principle</td>
<td>Anodic metal dissolution, Faraday’s law</td>
<td>Thermal evaporation</td>
</tr>
<tr>
<td>Workpiece material</td>
<td>Only metals</td>
<td>Metals and electrically conductive materials</td>
</tr>
<tr>
<td></td>
<td>No thermal damage of surface layer</td>
<td>Surface layer might be damaged</td>
</tr>
</tbody>
</table>

• **Laser Beam Machining (LBM)**
 - Energy source is a laser and the material is molten or evaporated in a controlled manner
 - Workpiece parameters include reflectivity, thermal conductivity, specific heat, melting point, evaporation point
 - Process parameters include laser power + laser speed

• **Other processes**
 - Water jet
• Electron beam machining
• Summary of advanced processes

Overview on Advanced machining processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Abbr.</th>
<th>Process rate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical machining</td>
<td>CM</td>
<td>0.0025 – 0.1 mm/min</td>
<td>Small batch size, flat or curved surfaces, no effect on surface layer</td>
</tr>
<tr>
<td>Electrochemical machining</td>
<td>ECM</td>
<td>2.5 – 12 mm/min</td>
<td>Medium to large batch size, complex shapes, expensive tooling, no effect on surface layer; restricted to metals</td>
</tr>
<tr>
<td>Electro-discharge machining</td>
<td>EDM</td>
<td>300 mm³/min (in mm³/min for Wire EDM)</td>
<td>Complex parts, expensive tooling, heat can induce surface damage; restricted to metals and electrically conductive materials</td>
</tr>
<tr>
<td>Laser beam machining</td>
<td>LBM</td>
<td>0.5 – 7.5 m/min</td>
<td>Cutting and hole making, expensive equipment, surface damage</td>
</tr>
<tr>
<td>Electron beam machining</td>
<td>EBM</td>
<td>1 – 2 mm³/min</td>
<td>Cutting and hole making, very small holes and slots, expensive equipment, requires vacuum</td>
</tr>
<tr>
<td>Water-jet machining</td>
<td>WJM</td>
<td>Varies</td>
<td>Nonmetallic materials, also flexible materials, no thermal damage, noisy</td>
</tr>
<tr>
<td>Abrasive water-jet machining</td>
<td>AWJM</td>
<td>Up to 7.5 m/min</td>
<td>Metallic and nonmetallic materials, also in layers</td>
</tr>
</tbody>
</table>

• Product development
Product development

- Design = creative and systematic prescription of part shape and functions under constraints
- From design to the product:

Traditional product development cycle

- Market → Design → Process planning → Production and assembly → Sales
- Time to market

Concurrent engineering (simultaneous engineering) = integration of design, production planning and more

- Market → Design → Process planning → Production and assembly → Sales
- Time to market

- Design stage determines ~80% of cost of product development/ manufacture
- Cost breakdown

Source: M. Groover, Fundamentals of modern manufacturing, 1996
Typical cost breakdown in manufacturing

Cost calculations

- **Manufacturing time**
 - Non-productive time
 - Setting up machines
 - Changing tools
 - Time when tool is moving between work paths
 - Productive time
 - Workpiece is touching tool
- **Production & Process Planning**
 - Production planning
 - Which product is made?
 - Process Planning
 - How many products are made?
 - Which processes are used?
 - What are the parameters, machines, and tools for each process?
- **Things to consider in process planning**
 - Part design
 - Quantity
 - Available processes + machines
 - Sequencing
 - Reference surfaces
 - Minimize setups
○ Safety
○ Cost
● Overall Summary of all Manufacturing Processes

Manufacturing processes

- Facility layout depends on
 - Material flow
 - Product flow
 - Buffers
 - Machine arrangement
- Trends in manufacturing management
 - Lean manufacturing -> eliminating wastes of time, money, materials, energy,...
 - Continuous improvement
 - Just in time production -> minimize inventory
 - Sustainability factors
 ■ Economic
 ■ Environmental
 ■ Social
Module 9

- Not on test :)