University of California, Davis
Society of Manufacturing Engineers at UC Davis

EEC 110A*
Electronics Circuits I
Unofficial

Mock Unofficial Practice Final Exam Solution

*Disclaimer: This document is the solutions to a sample final exam of an Electronics Circuits I midterm. It is a mock exam and does not necessarily reflect the format-in the length of the exam, content covered, the protocol, and other aspects-of an actual final exam of EEC 110A in University of California, Davis. However, this covers multiple topics that seems to be a complete agenda of EEC 110A and this document is an attempt to give students extra practice. The problems in this document are written entirely by the author. Any similarity, either in part or in whole, is a complete coincidence. If an error is caught, or if you have any questions and inquiries, please contact the author at mnhyu@ucdavis.edu.

A calculator is not encouraged where not needed. Scoring distribution for each question is not provided as it discourages students from judging the importance of a topic over another.

This solution has fourteen (14) pages, including this front cover page and the topology sheet.
DO NOT share these documents outside of https://sme.ucdavis.edu. Please do not distribute these to other websites, including Chegg, CourseHero, Discord, Quizlet, etc. Please do not physically print out this document. All copyrights reserved by the author.

Question 1) Short Response Questions	
Question 2) Diode Circuit Applications - Limiters	
Question 3) BJT Topology and Biasing	
Question 4) Cascaded Amplifiers	
Question 5) High Frequency Analysis of MOS Amplifiers	
Question 6) Feedback	

Note: Nodal $\mathrm{V}_{\text {IN }}$ in the schematics represent small signal AC inputs.

By Man Yu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023
DO NOT distribute this document. All copyrights reserved by the author.

1) Short Response Questions

Explain your claim for each in one sentence.
a) True or False: the unit for $\mu_{\mathrm{N}} \mathrm{C}_{\mathrm{OX}}(\mathrm{W} / \mathrm{L}) * \mathrm{~V}_{\mathrm{TH}}$ is Ω, resistance.

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{G S}-V_{T H}\right)^{2} \\
& {[A] \alpha\left\{\mu_{n} C_{0 x} \frac{W}{L}\right\}[V]^{2}} \\
& {[A / V] \alpha\left\{\mu_{n} C_{0} \frac{W}{L}\right\}[V] \propto[V] \equiv[\Omega]^{-1}}
\end{aligned}
$$

b) To "diode-connect" a BJT, what two terminals of a BJT should an engineer short together? Recall that diode-connecting a BJT directly puts the transistor at the edge of saturation.

$F A R: V_{B C}<0$
So edge: $V_{B C}=0$
So short B\&C
c) True or False: for an emitter follower, the absolute voltage gain is always less than or equal to

Also, EFs are not meant to be amplifiers, they ore buffers.
By Man Mu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.
2) Diode Circuit Applications - Limiters

Using diodes with $\mathrm{V}_{\mathrm{D}, \mathrm{ON}}=0.7 \mathrm{~V}$ and a 10Ω
resistor, engineer a limiter so $\mathrm{V}_{\text {out }}$ swings between $\pm 2.1^{\mathrm{V}}$. If $\mathrm{V}_{\text {IN }}=3 \sin (2 \mathrm{t})$, sketch $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ over time from $0 \mathrm{~s} \leq \mathrm{t} \leq 1 \mathrm{~s}$ on the same graph.

By Man Yu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023
DO NOT distribute this document. All copyrights reserved by the author.

Solutions 4
3) BJT Topology and Biasing

The BJT here has $\mathrm{V}_{\mathrm{A}}=5.722^{\mathrm{V}}, \mathrm{V}_{\text {Be. on }}=0.7 \mathrm{~V}, \beta=99$.
a) Find $\mathrm{V}_{\text {Bias }}$ so that the BJT is operating at the boundary of saturation and forward active region.
b) Using your $\mathrm{V}_{\text {Bias }}$ from part a), find $\mathrm{A}_{\mathrm{V}}=\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$. Both capacitors are very large and short for AC signals.

$$
\begin{aligned}
& V_{B i}-R_{B} i_{B}-V_{B E O N}-i_{B}(\beta+1) R_{E}=0 \\
& K V: V_{B i}=i_{B}\left(R_{B}+(\beta+1) R_{B}\right)+V_{B E O N} \\
&=i_{B}\left(100^{k}+100^{k}\right)+.7=200^{k_{B}+.7} \\
& \overrightarrow{F A R} i_{B}=\left(V_{B i}-.7\right) / 200^{k}(1) \\
& V_{B C}<0 \\
& V_{B C}=\underbrace{V_{B}}_{V_{B i}-R_{B} i_{B}}-\underbrace{\left(V_{C C}-R_{C} i_{B} \beta\right)}_{V_{C}} \\
& V_{B i}+i_{B}\left(R_{C B}-R_{B}\right)<V_{C C} \\
& V_{B i}+\frac{\left(V_{B i}-.7\right)}{200^{k}}(990-100)^{k}<7 \\
& V_{B i} \leqslant 1.856^{V}
\end{aligned}
$$

At $V_{B i}=1.8566^{\mathrm{V}}, \mathrm{i}_{\mathrm{C}} \simeq 572.202 \mu \mathrm{~A}$ \& if $V_{T}=25^{\mathrm{mV}}, \mathrm{g}_{\mathrm{m}}=22.888 \mathrm{mV}$

$$
\begin{aligned}
A_{v}=-g_{m}\left(R_{c} \| r_{0}\right) & =-22.888^{m}\left(10^{k} \| \frac{5.722^{v}}{572.2^{m}}\right) \\
& =-22.888^{m v^{m}} \times 5^{k \Omega} \\
A_{v} & =-114.44
\end{aligned}
$$

4) Cascaded Amplifiers

- $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }} \geq 300$.
- $(\mathrm{W} / \mathrm{L})_{\mathrm{N}}$ should realistically be at least 20 .
- To protect each transistor, neither stage should have an absolute gain of higher than 30.
- Maximum DC power consumption is 1 mW .

There are many possible ways to tackle this problem. This solution is one of the very many.
Let I_{1} be the current flowing through R_{1} and R_{2}. Taking the KVL of the far left branch in $D C$, and since we can neglect the base current of the BJT, we have a simple voltage divider.

$$
I_{1}=\frac{V_{D D}}{R_{1}+R_{2}}=\frac{8}{R_{1}+R_{2}}
$$

We should decide R_{1} and R_{2} based on how much current we can have going through them. Since there are three DC currents in this circuit, let's assume that we would like a third the current budget for I_{1}. We do not have to abide by this for the other two DC currents, but it is a good measure to decide the first two resistor values.

$$
\begin{aligned}
& I_{1} V_{D D} \cong \frac{P_{\text {bank }}}{3} \rightarrow I_{1} \cong \frac{1^{m W}}{3 \cdot 8^{v}} \simeq \frac{8^{v}}{R_{1}+R_{2}} \text {, so } \\
& 192^{k \Omega} \simeq R_{1}+R_{2}
\end{aligned}
$$

By Man Yu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.

The voltage drop across R_{2} should be at least 700 mV to accommodate for $\mathrm{V}_{\mathrm{BE}, \mathrm{ON}}$. Let's be safe and have that voltage drop to be 800 mV .

$$
I_{1} R_{2}=0.8^{V}
$$

Since 0.8 V is 10% of V_{CC},

$$
\frac{R_{2}}{R_{1}+R_{2}}=0.1 \text { (2) }
$$

To satisfy equation 1 and 2 simultaneously, $\mathrm{R}_{1}=172.8 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=19.2 \mathrm{k} \Omega$, and that also makes $I_{1} \simeq 41.67 \mu \mathrm{~A}$. Now, we should find the collector current (also the emitter current and let it be I_{2})
to find the appropriate bias points for the BJT. Notice that we would have to choose R_{4}, so we
have some freedom here as well. Per KVL around $\mathrm{R}_{2}, \mathrm{~V}_{\mathrm{BE}}$, and R_{4},

$$
I_{1} R_{2}=V_{B E+} I_{2} R_{4}
$$

Assuming that the BJT is in the FAR (we will check this later), $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. Let's arbitrarily
choose R_{4} to be $10 \mathrm{k} \Omega$, which seems reasonable (but if it's not, we can change it later).

$$
\frac{41.67 \mu \mathrm{~A}(19.2 \mathrm{k} \Omega)-0.7}{10 \mathrm{k} \Omega}=10 \mu \mathrm{~A}=I_{2}
$$

We are allowed to have a gain of -30 in a given stage. Let's maximize that here. Using the BJT
stage is a common collector stage with a gain, we can determine R_{3}

$$
-\frac{R_{c}}{1 / g_{m}+R_{E}}=-\frac{R_{3}}{1 / g_{m Q}+R_{4}}=\frac{-R_{3}}{25 m / 1 / \mu_{\mu}+10 \mathrm{k} \Omega}=-30
$$

That makes $R_{3}=375 \mathrm{k} \Omega$. Now, to verify that we are in the forward active region, so all our
equations we have used are valid, we would want to make sure that $\mathrm{V}_{\mathrm{BC}}<0$.

$$
\begin{aligned}
& V_{B C}=V_{D D} \frac{R_{2}}{R_{1}+R_{2}}-V_{D D}+R_{3} I_{2}<0 \\
& 8(0.1)-8+375(0.01)=-3.45<0
\end{aligned}
$$

Let's check our power budget so far.

$$
P_{(1+2)}=V_{D D}\left(I_{1}+I_{2}\right)=8^{V}\left(41.67 \mu^{\mu A}+10^{\mu \mathrm{A}}\right)=413.33 \mu \mathrm{~W}
$$

By Man Yum mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.

Solutions ${ }_{7}$
We still have $586.67 \mu \mathrm{~A}$ left in our bank, so the drain current of the MOS would have to be at most $73.33 \mu \mathrm{~A}$. Remember, our goal now is to achieve at least -10 for the MOS stage to have an ultimate gain of 300 . We should be cautious here, because it is harder to achieve a gain of larger than one if we have a common source with degeneration, so we should short out the degenerating resistor, R_{6}, using a large capacitor. With that, our gain for stage 2 is now simply $A_{v}=-g_{m} M R_{5}$
w here $g_{m M}=\sqrt{2 \mu_{N} C_{o x} \frac{W}{L} I_{D}}$. So we simply have to decide our size ratio and drain current from that.
We have to make sure that the MOS is in saturation, and we should check to see what our limit is

$$
V_{G_{0}}<V_{T_{T}} \rightarrow V_{G}-V_{D_{0}}-4.25-\left(8-I_{0} R_{4}\right)<0.4 \text {, so }
$$

If we aim to have a gain of -10 , then we can change the condition of equation 3 to not include R_{5}.

$$
-10=-R_{5} \sqrt{2 \mu_{n} C_{0 x} I_{0} w}
$$

$$
\frac{10 \sqrt{I_{D}}}{\sqrt{2 \mu_{n} C_{0} V / L}}<4.15 \text { (4) }
$$

With our maximum of $I_{D}=73.33 \mu \mathrm{~A}$ and minimum $\mathrm{W} / \mathrm{L}=20$, equation 4 is satisfied regardless of what size and drain current we choose and we would remain in saturation. Let's choose a small I_{D} to minimize power usage, and $\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ and W / L as a minimum of 20 (so $\mathrm{W}=900 \mu \mathrm{~m}$), and pair this with a $\mathrm{R}_{5}=50 \mathrm{k} \Omega$. This gives us a -14.14 gain, and the overall gain would be 424.3 . We still need to find R_{6} that yields such drain current. $I_{D}=\frac{1}{2} \mu_{n} C_{O X} \frac{W}{L}\left(V_{G S}-V_{T H}\right)^{2}$

$$
\begin{gathered}
10=\frac{1}{2} 200 \times 20\left(V_{a s}-0.4\right)^{2} \\
V_{G S} \simeq 470.7 \mathrm{mV} \\
V_{G S}=V_{G}-I_{D} R_{6} \\
.4707=4.25-10 \mu A^{\prime} \times R_{6} \rightarrow R_{6} \simeq 458 \mathrm{k} \Omega
\end{gathered}
$$

which is shorted in AC by a parallel capacitor. In conclusion,

$$
\begin{array}{ll}
R_{1}=172.8^{\mathrm{k} \Omega} & R_{4}=10^{\mathrm{kR}} \quad \text { Choose large } C \text { in parallel } \mathrm{w} / R_{6} \\
R_{2}=19.2^{\mathrm{kR}} & R_{5}=50^{\mathrm{kR}} \quad \mathrm{~W} / L=900 \mathrm{\mu m} / 45 \mathrm{~km}=20 \\
R_{3}=375^{\mathrm{kR}} & R_{6}=458^{\mathrm{kR}} \quad \mathrm{~L}=9 \mathrm{~m}
\end{array}
$$

And this gives us a gain of 424.3 and consumes $493.33 \mu \mathrm{~W}$ in DC.

By Man Mu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.

Solutions 8
5) High Frequency Analysis of MOS Amplifiers

Given the amplifier below, where $\lambda=0, \mathrm{~V}_{\mathrm{TH}}=0.4^{\mathrm{V}}, \mu_{\mathrm{N}} \mathrm{C}_{\mathrm{OX}}=400 \mu \mathrm{~A}^{*} \mathrm{~V}^{-2}, \mathrm{~W} / \mathrm{L}=30, \mathrm{~V}_{\text {BIAS }}=0.5^{\mathrm{v}}$,
$R_{D}=50^{k \Omega}$, and an L that (for part b and d) is super large so any AC signal will open circuit it,
a) Find the drain current in DC.
b) From the small signal model, find the low frequency gain $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$.
c) Using your gain from part b), find the exact output and input impedance in terms of $\mathrm{L}, \mathrm{C}_{\mathrm{GD}}, \mathrm{C}_{\mathrm{DS}}, \mathrm{C}_{\mathrm{GS}}$, and ω. Do not open circuit the inductor.

$$
C_{G D}=5 f F \quad C_{G S}=10 f F
$$

d) Approximate the output pole frequency, if $4 \mathrm{C}_{\mathrm{GD}}=2 \mathrm{C}_{\mathrm{GS}}=\mathrm{C}_{\mathrm{DS}}=20 \mathrm{fF}$.

$D C$: (L is short chit)

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{n} C_{D} \times \frac{w}{L}\left(V_{G S}-V_{T H}\right)^{2} \\
&=\frac{1}{2} 400 \times 30(0.5-0.4)^{2}=60 \mu A=I_{D} \\
& \text { FAR? } V_{G D}<V_{T T} \\
& 0<0.4 \text { Yes }
\end{aligned}
$$

$$
g_{m}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}}=\sqrt{2 \times 400 \mu^{\mu} \times 30 \times 60 \mu}=1.2 \mathrm{mv}
$$

$A C: C L$ is open, freq is lew enough to have small caps be open

By Man Mu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023
DO NOT distribute this document. All copyrights reserved by the author.

Miller's

$$
z_{a t}=j \omega L\left\|\frac{-j}{\omega\left(C_{G D}+C_{D s}\right)}\right\| 50^{k}
$$

Output pole

$$
\begin{aligned}
& \omega_{\text {out }} \approx \frac{1}{R_{D}\left(C_{D S}+C_{G D}\right)} \\
\approx & \frac{1}{50 e 3 \times 25 e-15} \approx 800^{\mathrm{Mrad} / \mathrm{s}}
\end{aligned}
$$

$$
f_{\text {out }}=\frac{\omega_{\text {out }}}{2 \pi} \approx 127.32 \mathrm{MHz}
$$

$$
\begin{aligned}
& z_{\text {in }}=\frac{-j}{\omega\left(C_{G S}+\frac{C_{G D}}{61}\right)} \| \frac{j \omega L}{61}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[Z_{1} \square]{A} \xrightarrow{Z_{2}} \\
& Z_{1}=Z_{F}\left(1+\frac{V_{B}}{V_{A}}\right)^{-1} \\
& Z_{2}=Z_{F}\left(1+\frac{V_{A}}{V_{B}}\right)^{-1} \\
& \begin{aligned}
\frac{1}{j \omega C_{1}}=\frac{(1+60)^{-1}}{j \omega C_{G D}} & \frac{1}{j \omega C_{2}}=\frac{(1+1 / 60)^{-1}}{j \omega C_{G D}} \\
C_{1} & =\frac{C_{G D}}{61}
\end{aligned} \quad C_{2} \approx C_{G D}, ~ j \omega L_{1}=\frac{j \omega L}{1+60} \quad j \omega L_{2}=\frac{j \omega L}{1+1 / 60} \\
& L_{1}=\frac{L}{61} \quad L_{2} \approx L
\end{aligned}
$$

6) Feedback

For a negative feedback amplifier with forward gain of A and feedback gain of β,

$$
A(s)=\frac{10^{13}}{\left(s+T_{X}\right)(s+10)\left(s+10^{3}\right)\left(s+10^{5}\right)}
$$

Find phase margin and comment on stability for each T_{X} and β combination below. If the open loop system is unstable, find an extra factor, K , of gain to $\mathrm{A}(\mathrm{s})$ so the open loop system oscillates.

	T_{X}	β	$\mathrm{PM}\left({ }^{\circ}\right)$ - Stable?	Open Loop Stability	K (if applicable)
a)	1	1	22.5^{0} unstable	Unstable	0.1
b)	10	0.1	0^{0} Unstable	Unstable	0.1
c)	0	0.01	22.5^{0} stable	Unstable	0.1

d) Given a general amplifier (not necessarily part a-c), complete the circuit using general

By Man Yu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023
DO NOT distribute this document. All copyrights reserved by the author.
a) $T_{x}=1 \quad \& \quad \beta=1$

$$
\begin{aligned}
& \begin{aligned}
A(s) & =\frac{1013}{\left(s+T_{x}\right)(s+10)\left(s+10^{3}\right)\left(s+100^{3}\right)} \text { Solution } \\
& =\frac{10^{3}}{(s+1)\left(\frac{5}{10}+1\right) 10\left(\frac{5}{10}+1\right) 10^{3}\left(\frac{3}{10^{5}}+1\right) 10^{5}}
\end{aligned}
\end{aligned}
$$

By Man Yum mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.
b) $T_{x}=10 \& \beta=1$

$$
\begin{array}{rlrl}
\text { Os: }|\beta A|=+1 & A(s) & =\frac{100^{13}}{\left(s+T_{x}\right)(s+10)\left(s+10^{3}\right)\left(s+10^{5}\right)} & \text { Solut } \\
|A|=10 & & =\frac{10^{13}}{\left(\frac{s}{10}+1\right)^{3} 10^{2}\left(\frac{3}{10^{3}+1}\right) 10^{3}\left(\frac{s}{10^{5}}+1\right) 10^{5}} \\
& =\frac{10^{3}(60 d(B)}{\left(10^{3}+1\right)^{2}\left(\frac{s}{10^{3}+1}\right)\left(\frac{s}{10^{5}}+1\right)}
\end{array}
$$

By Man Yum mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.
c) $T_{x}=0 \& \beta=01$

$$
\begin{aligned}
O s c:|\beta A|=+1 \quad A(s) & =\frac{10^{13}}{\left(s+T_{x}\right)(s+10)\left(s+10^{3}\right)\left(s+10^{5}\right)} \\
|A|=100 & =\frac{10^{13}}{s\left(\frac{s}{10}+1\right) 10\left(\frac{s}{10^{3}}+1\right) 10^{3}\left(\frac{s}{10^{5}}+1\right) 10^{5}} \\
& =\frac{10^{4}(80 d B)}{s\left(\frac{s}{10}+1\right)\left(\frac{s}{10^{3}}+1\right)\left(\frac{s}{10^{5}}+1\right)}
\end{aligned}
$$

By Man Yum mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.

By Man Mu mnhyu@ucdavis.edu. Do not print out a physical copy. Version 1 created January 5, 2023 DO NOT distribute this document. All copyrights reserved by the author.

